
ising Documentation

Konrad Jałowiecki, Marek Rams, Bartłomiej Gardas

Jan 21, 2019

Contents:

1 Installation 3
1.1 Installing binary wheel from PyPI . 3
1.2 Building from source . 3

2 User guide 5
2.1 Introduction . 5
2.2 Basic usage . 5
2.3 Supported input formats . 6
2.4 Tweaking execution . 6

i

ii

ising Documentation

Ising is an open source package for exactly solving abritrary Ising model instances via exhaustive search. It can be
used as an excellent tool for benchmarking other solvers or generating low energy spectra. The package is compatible
with *NIX systems (and in principle should work on Windows too). Ising supports parallel computation via OpenMP
or GPU, if it was build with CUDA support.

Contents: 1

ising Documentation

2 Contents:

CHAPTER 1

Installation

1.1 Installing binary wheel from PyPI

If you are running a Linux system and are only interested in non GPU-enabled build, you can install binary wheel
from PyPI as usual:

pip install ising

Unfortunately, we cannot provide GPU-enabled binary wheel due to a manylinux PEP-513 policy, as it is impossible
to build ising on CentOS 5.

1.2 Building from source

If you are not running Linux and/or are interested in a GPU-enabled build, you need to build ising from source. The
process is simple and requires running a single command. We highly recommend using virtual environment instead of
installing the package into the global scope. Note that otherwise installing the package may require root privileges.

1.2.1 Prerequisites

To build ising you need the following:

• Virtually any C and C++ compiler,

• A Fortran compiler. The build script supports PGI, Intel, and gfortran compilers.

• Working CUDA toolkit. For CPU based implementation only its thrust library with OMP_DEVICE_BACKEND
is used, but nvcc is still required for compiling sources. You can get around this requirement and use your local
installation of thrust if you use GNU fortran compiler.

• numpy Python package installed in the same environment as is used to run the build process.

• Python development headers.

3

https://www.python.org/dev/peps/pep-0513/
https://thrust.github.io/

ising Documentation

In addition, to build a GPU-enabled version you need PGI CUDA Fortran. Our package was tested against CUDA 9.2
and CUDA 10.0.

1.2.2 Building and installing

To build the ising package download its source code and run install.py script as follows:

python install.py --fcompiler=<fortran_compiler> [--usecuda]

where <fortran_compiler> is one of pgi, intel, gfortran. The --usecuda switch can be used to enable
GPU support. Note that --usecuda requires --fcompiler=pgi.

The script should take care of building extensions and installing package, so after running the above command ising
package should be ready to use.

4 Chapter 1. Installation

CHAPTER 2

User guide

2.1 Introduction

The ising package allows to find a ground state (or, more generally, low energy spectrum) of an arbitrary Ising model.
That is, it allows you to find the minimum of the following energy function

𝐻(𝑠0, . . . , 𝑠𝑛) = −
𝑛∑︁

𝑖,𝑗=0

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 −
𝑛∑︁

𝑖=0

ℎ𝑖𝑠𝑖

where 𝐽𝑖𝑗 and ℎ𝑖 are arbitrary real coefficients and variables 𝑠𝑖 under optimization are either −1 or 1.

2.2 Basic usage

The main functionallity of ising package is wrapped in ising.search function. As an example, suppose you want
to find 4 lowest energy states of the following Ising model

𝐻(𝑠0, 𝑠1, 𝑠2) = −2𝑠0𝑠1 + 3𝑠1𝑠2 + 2.5𝑠2𝑠3 − 𝑠0

In that case you could run ising.search as follows

import ising

graph = {(0, 1): 2, (1, 2): -3, (2, 3): 2.5, (0, 0): 1}

result = ising.search(graph, num_states=4)
print(result.energies)

Note how the above model is specified as a dictionary:

• 𝐽𝑖𝑗 are specified as entries with key (i, j).

• ℎ𝑖 are specified as entries with key (i, i).

Read further to learn other input formats that ising can handle.

5

ising Documentation

2.3 Supported input formats

There are three formats supported by ising:

• The dictionary format already presented in previous section.

• The coefficients list format. In this format coefficients are specified as a list of lists, in hich each row is of the
form [i, j, J_ij] or ‘‘[i, i, h_i]‘.‘

• The matrix format. In this format you specify your coefficients as a matrix in which diagonal elements corre-
spond to ℎ𝑖 and off-diagonal elements correspond to 𝐽𝑖𝑗 . The matrix can either be a list of lists or a numpy
array.

Putting it in another way, here are equivalent ways of specifying graph from the above basic example

coefficients list format
graph = [[0, 1, 2], [1, 2, -3], [0, 0, 1], [2, 3, 2.5]],
matrix format: as list of lists or numpy array
graph = [[1, 2, 0, 0], [0, 0, -3, 0], [0, 0, 0, 2.5], [0, 0, 0, 0]],
graph = np.array([[1, 2, 0, 0], [0, 0, -3, 0], [0, 0, 0, 2.5], [0, 0, 0, 0]]),

Note that the matrix format requires your spins to be labelled with 0, . . . , 𝑛, other two formats are not restricted in this
way.

Also note that since both 𝐽𝑖𝑗 and 𝐽𝑗𝑖 can be specified in all the formats it does not matter which one you choose. In
fact, if you choose to specify both coefficients, both of them will be used. Therefore, using the following graphs would
yield the same result as the previous example:

coefficient list format
graph = [[0, 1, 1], [1, 0, 1], [1, 2, -3], [0, 0, 1], [2, 3, 2.5]],
matrix format
graph = [[1, 1, 0, 0], [1, 0, -3, 0], [0, 0, 0, 2.5], [0, 0, 0, 0]]

2.4 Tweaking execution

You can use the following keyword arguments to ising.search to tweak its execution:

• num_states: integer specifying how many low-energy states should be found.

• method: indicating whether CPU (method='CPU') or GPU (method='GPU') implementation should be
used. If not given, CPU implementation is used by default.

• energies_only: boolean indicating whether to return only energies (True) or also states corresponding to
those energies (False). Default is False, set it to True if you don’t need states, as it should shorten the
execution time.

• chunk_size: ising performs search in chunks of the size 2𝑘, where 𝑘 is choosen as a largest number such
that computations are feasible on the host. You can tweak this value to use other exponent if you choose so.

In addition, for CPU implementation, you can specify how many OMP threads will be used for computations using
OMP_NUM_THREADS environmental variable.

6 Chapter 2. User guide

	Installation
	Installing binary wheel from PyPI
	Building from source

	User guide
	Introduction
	Basic usage
	Supported input formats
	Tweaking execution

